Bionic-eye maker has vision of the future

Los Angeles Times


Robert Greenberg got tired of hearing from senior engineers that it wasn’t possible to build his product idea: a bionic eye that gives sight to the blind.

“A lot of the folks straight out of school didn’t know any better, so I hired them instead,” quipped Greenberg, chief executive of Second Sight Medical Products Inc., a Sylmar, Calif., biotech company. “They didn’t know how hard it was going to be — that it was impossible. And so they tried.”

Greenberg can laugh now that he once thought developing the device would take a year and $1 million. Some 20 years and $200 million later, the first bionic eye has helped more than 20 European patients regain some of their sight.

Called the Argus II Retinal Prosthesis System, the device recently was approved by the Food and Drug Administration. Second Sight, which has 100 employees, is allowed to sell the bionic-eye system to patients in the U.S. with advanced retinitis pigmentosa, a degenerative eye disease that can cause blindness.

“We are a far cry from restoring 20/20 vision,” said Brian V. Mech, Second Sight’s vice president of business development, who has a doctorate in materials science and an MBA from the UCLA Anderson School of Management.

“We are taking blind people back up to low vision, and that is pretty significant.”

Mech likes to show videos of once-sightless patients who, after receiving the retinal prosthesis, are able to follow a person walking down the street and discern a street curb without using their canes.

“Until our product, these patients had no other option to obtain the ability to see,” Mech said of the $100,000 device, part of which rests on a pair of Oakley Inc. sunglass frames. The cost to European patients has been paid by insurance companies in most cases.

Palo Alto attorney Dean Lloyd, who lost his vision 17 years ago, got the bionic- eye system as part of the U.S. testing process. It allows him to see “boundaries and borders, not images,” but has had a profound effect on his life.

Lloyd cites an incident before he received the eye system that still rankles. In the middle of a courtroom trial, an opposing attorney said Lloyd didn’t stand a chance with his case because he couldn’t even keep his socks straight: Lloyd had mixed up his black, courtroom socks with his white athletic ones.

“What did I do after the surgical procedure that I hadn’t been able to do?” Lloyd said. “I went home and sorted all of my socks.”

The story of how the bionic eye came to be made in Sylmar underscores the state’s long record of medical device advances and involves top university researchers who were brought to Southern California to work on the project.

Greenberg likened the degree of difficulty to “shrinking a television set to the size of a pea, then throwing it into the ocean and expecting it to work.”

For Greenberg, it began in the early 1990s when he was a doctoral candidate in the Department of Biomedical Engineering at Johns Hopkins University in Baltimore.

Some of the first work was being done there, testing patients who had lost their vision because of retinitis pigmentosa, to see if electrically stimulating their retinas would produce results. It did.

“Using one electrode, the patient saw one spot of light,” Greenberg said. “Second electrode, and the patient was seeing two spots of light. During that experiment, I was hooked.”

Greenberg said he thought: “This is just engineering. Put more spots and you could make more pixels, like lights on a scoreboard or pixels on your computer monitor. You could see images.”

The Argus II has three parts. One part includes a small video camera that sits on sunglasses. Another part is a portable computer, which can be worn on a belt or carried in a purse.

The most-complicated part is a tiny implant that is placed near the retina during a two-hour surgical procedure. The implant carries 60 electrodes, up from 16 in the first version.

The computer processes signals from the video camera and wirelessly relays the information back to the implants.

The bionic-eye system requires an unusual manufacturing process involving highly trained engineers working with microscopes to manually connect each of the 60 electrode arrays.

“Almost every step is done under a microscope,” Greenberg said.

Don't Miss a Story

Sign up for our newsletter to receive daily news directly in your inbox.